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Optimization of the Patterning Processing and ElectricalCharacteristics of a Photopatternable Organosiloxane-BasedGate Dielectric for Organic Thin-Film Transistors
Sunho Jeong, Seong Hui Lee, Dongjo Kim and Jooho Moon�Department of Materials Science and Engineering, Yonsei University, Seoul 120-749(Received 27 June 2008)

A ultraviolet (UV)-crosslinkable organosiloxane-based organic-inorganic hybrid gate dielectricfor use in organic thin-�lm transistors was fabricated. The hybrid dielectric was synthesized via asol-gel reaction using a mixture of a Si-based alkoxide, which contained a UV-crosslinkable organicfunctional group for photopatternability and a Zr-based alkoxide, which provided for a high dielectricconstant (�5.5). To obtain a precisely patterned dielectric layer with a linewidth of 3 �m, the pre-bake temperature and the UV irradiation time were optimized by investigating the evolution of thechemical structure and analyzing the photopolymerization kinetics of the UV-crosslinkable organicgroup. In addition, chemical groups that caused current leakage were eliminated by controlling thepost-bake temperature, resulting in a gate dielectric with a dielectric strength of 1.2 MV/cm.
PACS numbers: 82.35.+t, 72.80.Sk, 81.20.Fw, 85.30.TvKeywords: Organic thin-�lm transistors, Sol-gel, Photo-patternable, Gate dielectric
I. INTRODUCTION

Organic thin-�lm transistors (OTFTs) have receivedconsiderable attention recently because of their 
exibil-ity, light weight, low cost and processability. OTFTshave been considered as candidates for a wide varietyof applications [1{5]. The performance of OTFTs hasimproved signi�cantly in the past decade and has al-ready reached a level comparable to that of hydrogenatedamorphous-silicon transistors [6,7]. However, despite theimpressive advances that have been made towards theoverall improvement of OTFTs, there have been rela-tively few reports on patterned gate dielectrics.Gate dielectrics are patterned for access to either thegate electrode in a bottom-gate con�guration or thesource/drain electrode in a top-gate con�guration, in or-der to be applicable for active-matrix displays and in-tegrated circuits. Photolithography, which involves pat-terning a photoresist, gate dielectric etching and pho-toresist removal, has been generally employed to pat-tern gate dielectrics. However, this process is rathercomplicated and relatively expensive. Photopattern-able gate dielectrics are viable alternative materials thatcan simplify the complicated processing procedures andthereby reduce the manufacturing costs for modern or-ganic electronics. The research on photoimageable gatedielectrics has been restricted to a few materials, such
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as polyvinylphenol, polyimide, acryl-based polymers andsol-gel derived siloxane-based hybrid polymers [8{17]. Inparticular, the sol-gel derived hybrid materials can betailored at the molecular level by controlling the chemi-cal structure of the precursors used for the formulation.Sol-gel derived siloxane-based hybrid materials are com-posed of an inorganic siloxane network, a dielectric con-stant control unit and a photocurable organic unit. Or-ganic components, such as unsaturated hydrocarbons orepoxide substitutes present in the glass matrix can poly-merize upon illumination by UV light [18], causing de-creased solubility of the irradiated parts and enabling theformation of patterns by a simple development process.A transition metal oxide is incorporated to increase thedielectric constant of the resulting hybrid material.In a recent study, we introduced a photopatternableorganosiloxane-based hybrid dielectric synthesized by asol-gel reaction and we demonstrated that our hybriddielectric is suitable for gate dielectrics for OTFTs [17].In this report, we discuss the optimization of the processconditions that determine the quality of the patternedstructure and the electrical characteristics of the hybriddielectric.
II. EXPERIMENT

Photopatternable organic-inorganic hybrid precursorsolutions were prepared using a combination of 3-methacryloxypropyltrimethoxysilane (MEMO) and zir--2154-
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Fig. 1. (a) Schematic diagram showing the mechanism of photopolymerization initiated by interaction between photode-composed initiator and a methacryl group (functional group of the hybrid precursor). (b) Schematic diagram showing themechanism of formation of ZrO2 particulate phase in a siloxane-based matrix.
conium isopropoxide (Zr(OPri)4). MEMO was pre-hydrolyzed with acid-catalyzed water. A mixture ofZr(OPri)4 and methacrylic acid in 1-propanol was com-bined with the prehydrolyzed MEMO solution in amolar ratio of 8 : 2 (MEMO:Zr(OPri)4). Next,deionized water was added for hydrolysis and con-densation reactions between the two precursors; 1-hydroxycyclohexylphenylketone was used as the pho-toinitiator. After aging for an appropriate duration, thesynthesized sol was �ltered through a 0.2-�m membrane�lter (PTFE, Advantec MFS). All reactions were per-formed under nitrogen atmosphere at 25 �C in a waterbath (Isotemp 3013, Fisher Scienti�c).Heavily doped silicon was used as the substrate andwas cleaned by a wet method using trichloroethylene,acetone, isopropyl alcohol, methyl alcohol and deionizedwater. Native oxide (a few angstroms thick) on the sur-face of the Si substrate was not removed because its pres-ence did not cause a variation in the electrical propertiesof the hybrid dielectric. The sol was then spin-coated onthe Si substrate and pre-baked at di�erent temperaturesto investigate the in
uence of the pre-bake temperatureon the structural evolution of the hybrid �lm. Next,the �lm was selectively irradiated using a UV lamp (Hglamp, 350 W, � < 400 nm, Midas-System MD2-4000)with an intensity of 15 mW for a period between 0 to 30min to determine the optimized dosage of UV irradiationfor obtaining a well-patterned structure. The selectively

irradiated hybrid �lm was then developed in isopropylalcohol and subsequently post-baked at either 130 �C or170 �C. The chemical structure of the hybrid �lm and themicrostructures of the patterned hybrid dielectric wereobserved by attenuated total re
ectance Fourier trans-form infrared spectrometry (ATR-FT-IR, Jasco) and op-tical microscopy (Leica DMLM), respectively.To demonstrate the in
uence of the structural evolu-tion caused by the post-bake process on the electricalcharacteristics of the hybrid �lm, the electrical proper-ties were investigated by current-voltage (I-V) measure-ments and capacitance-voltage (C-V) measurements at afrequency of 1 MHz using a Au/dielectric/heavily dopedsilicon structure. All I-V and C-V measurements wereperformed in air using an Agilent 5263A source-measureunit and an Agilent 4284A precision LCR meter, respec-tively. All samples were dehydrated in a vacuum atmo-sphere prior to taking the measurements.
III. RESULTS AND DISCUSSION

A photopatternable organic-inorganic hybrid precur-sor solution was synthesized using a mixture of MEMOand Zr(OPri)4. MEMO is a silicon-based alkoxide withthree alkoxy groups and one methacryl group, which canbe cross-linked by either UV light or thermal energy.
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Upon UV illumination, free-radical polymerization of themethacryl group is initiated and accelerated by photode-composed initiator, as shown in Figure 1. UV irradia-tion decomposes the photoinitiator into free radicals andthese radicals can attack the unsaturated C=C bond in amethacryl group. Cross-links between methacryl groupsare created via transformation of C=C bonds into C-C bonds, endowing a negative-resist photopatternablecharacter.Zr(OPri)4 is a typical zirconium-based alkoxide withfour alkoxy groups and it was incorporated to increasethe dielectric constant of the hybrid dielectric �lm. As re-ported previously [17], isolated crystalline-ZrO2 clustersare dispersed in the amorphous silicon dioxide matrixand their crystal sizes are around 10 nm. The mecha-nism of formation of this transition metal oxide partic-ulate phase is depicted in Figure 1b. Firstly, MEMO ispartially hydrolyzed in a prehydrolysis step. Then, dur-ing the injection step of Zr(OPri)4, the Si-OH groupsjoin with the Zr precursor via hydrolysis-condensation,producing -Si-O-Zr- networks as an intermediate prod-uct. Subsequently, rehydrolysis and polycondensation of-Si-O-Zr- upon the introduction of additional water re-sult in the growth of ZrO2 particles nucleated withinthe siloxane-based matrix. Because the ZrO2 nucleiare surrounded by a rigidly grafted siloxane backbone,their growth is limited to a few nanometers. These dis-persed ZrO2 inclusions, or clusters, e�ectively increasethe dielectric constant of the hybrid dielectric above 5.5,whereas the dielectric constant of pure siloxane-basedmaterials are �3.9.In order to pattern the as-prepared hybrid �lm, suc-cessive procedures such as pre-baking, UV irradiationand post-baking are necessary. Pre-baking is requiredto evaporate the solvents in the spin-coated �lm and toimprove adhesion of the �lm onto substrate, without in-ducing any chemical reaction between the synthesizedhybrid precursor monomeric species. At pre-bake tem-peratures below 90 �C, solvents in the �lm were not com-pletely removed, causing the �lm to adhere to the overly-ing photomask and thus hindering the photolithographicpatterning process. Pre-baking at temperatures above90 �C allowed the hybrid �lms to completely dry, form-ing a non-sticky and solid surface. However, pre-bakingat 110 �C prevented the unexposed portions of the thehybrid �lms from being dissolved by the developing sol-vent, regardless of the amount of UV irradiation. Thise�ect is a result of a thermally-driven chemical reactionthat increased the connectivity between the hybrid pre-cursor monomeric species. To investigate the evolutionof the chemical structure of the hybrid �lm around 110�C, ATR-FT-IR spectra of pre-baked hybrid �lms wereanalyzed as shown in Figure 2. Absorption bands at1720 cm�1 and 1643 cm�1 result from the C=O stretch-ing mode and the C=C stretching mode, respectively, ofmethacryl groups [19]. Absorption bands at 1168 cm�1,1120 cm�1 and 945 cm�1 are assigned to the -CH3 rock-ing mode of Si-OCH3, the Si-O-Si asymmetric stretching

Fig. 2. ATR-FT-IR absorption spectra of (a) methacryland (b) silanol, methoxy and silicate groups in �lms pre-baked at 90 and 110 �C. (Film thickness = 265 nm).
mode and the Si-OH asymmetric stretching mode, re-spectively [20]. While peaks due to the C=C bonds of themethacryl groups, the Si-OCH3 groups and the Si-OHgroups are present for hybrid �lms pre-baked at 90 �C,peaks resulting from the C=C bonds of the methacrylgroups and the Si-OCH3 groups completely disappearand the peak resulting from the Si-OH groups dimin-ishes for hybrid �lms pre-baked at 110 �C. This indicatesthat at 110 �C polymerization of the unsaturated C=Cbonds goes to completion and the condensation reactionthat consumes the alkoxy and silanol groups proceeds tosome extent. Therefore, pre-baking at 90 �C is adequateto evaporate the solvents without initiating the sol-gelchemical reaction and thermally inducing polymerizationof the methacryl groups.The UV-irradiation procedure plays a dominant role inpatterning a photopatternable hybrid dielectric material.Figure 3 shows the ATR-FT-IR absorption spectra ofhybrid �lms illuminated using di�erent exposure times.We observed that peaks due to the C=C bonds dimin-ished with increasing irradiation times, indicating that
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Fig. 3. ATR-FT-IR absorption spectra of methacryl in�lms irradiated from 0 to 30 min. All samples were pre-bakedat 90 �C prior to UV irradiation. (Film thickness = 265 nm).
UV irradiation induces the cross-linking of the methacrylgroups. However, the UV irradiation for a long time in-creases the resistance against a developing solvent whenthe pattern formed, but also deteriorates the patternquality, as shown in Figure 4. The kinetics of the pho-topolymerization of the methacryl groups is related tothe radicals induced by the UV-decomposed initiator.Since the formation and destruction of radicals both oc-cur rapidly after the onset of the reaction, we can assumethat the free radical-induced polymerization is a steadystate process. The steady-state polymerization kineticscan be expressed by the following equation [21]:
�d[M ]dt = kp[M ]sfkd[I]kt ;

where [M ] is the total concentration of all chain radi-cals, [I] is the concentration of the initiator and f is thefraction of initiator radicals that are actually involvedin the polymerization and are not consumed by side re-actions. kp, kt and kd represent the rate constants forpropagation, termination and dissociation of the initia-tor, respectively. Since [I], kt, kd and f are independentof [M ], a linear relationship should be found between theln [M ] and reaction time (i.e. UV irradiation time). [M ]can be represented by the area of the band due to theC=C stretching mode at 1643 cm�1, because the bandarea is proportional to the methacryl monomer concen-tration. As shown in Figure 5, the dependency of theln [M ] on the UV irradiation time can be divided intothree stages and each stage is characterized by a linearbehavior of distinct slopes. This means that each di�er-ent stage of the polymerization conforms to general free-radical polymerization kinetics. The band area abruptlyreduced during the initial UV illumination (stage I), fol-lowed by a gradual decrease in the band area after 3 minof UV illumination (stage II). In stage I, the C=C bonds

Fig. 4. Optical microscopy image of patterned hybrid di-electric �lm after UV irradiation for (a) 15 min and (b) 30min. The linewidths of the patterned hybrid �lm irradiatedfor 15 min and 30 min are 3 �m and 3.5 �m, respectively.The linewidth of the pattern on the photomask was 3 �m.
are rapidly consumed by vigorous initiation of the poly-merization of the methacryl groups, which starts with thephotodecomposition of the photoinitiator. In stage II,the consumption of the C=C bonds slow down since thepropagation step is restricted by a sluggish di�usion ofthe monomeric species in the solid phase. However, after15 min of UV illumination (stage III), a rapid polymer-ization reaction starts again. Too much UV irradiationprovides excess energy for photodecomposed initiator tomigrate into regions shadowed by the photomask, result-ing in cross-linking of methacryl groups in undesired ar-eas. This is why the patterned structure illuminated for30 min exhibits a broader linewidth and irregular shapeat the edge of patterns (Figure 4(b)).Post-baking also plays an important role in fabricatinga gate dielectric of high quality. Even after UV irradia-tion, the unsaturated C=C bonds, methoxy groups andsilanol groups can remain, which deteriorates the elec-trical properties of the hybrid �lm; thus, these groupsneed to be completely eliminated by cross-linking theunsaturated C=C bonds and inducing the condensationreaction via post-baking. As shown in Figure 6, the C=Cbonds, methoxy groups and silanol groups were removed
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Table 1. Electrical characteristics of hybrid �lms prepared without post-baking and by post-baking at 170 �C. All sampleswere pre-baked at 90 �C and irradiated by UV for 15 min prior to post-baking. The �lm thickness of all the hybrid �lms is 265nm. Dielectric Strength# CapacitanceHybrid Dielectric Film (MV/cm) (nF/cm2) Dielectric ConstantWithout post-baking 0.2 24.8 7.5Post-baked at 170 �C 1.2 18.2 5.5# De�ned as the electric �eld at a current density of 10�6 A/cm2.

Fig. 5. Logarithmic plot of the area of the C=C stretchingmode (1643 cm�1) as a function of UV illumination time.
by post-baking at temperatures above 130 �C. However,post-baking at around 170 �C is required to evaporateadsorbed water and residual organic solvent. During de-position of electrodes or semiconductor materials thatare placed onto the hybrid dielectric �lm for the fabrica-tion of OTFTs, vapors of any remaining water and othersolvents can damage the overlying electroactive mate-rials. To con�rm the improvement of electrical proper-ties by post-baking, I-V and C-V measurements were ob-tained for hybrid �lms post-baked at 170 �C and for �lmsprepared without post-baking; the results are shown inFigure 7 and Table 1. Hybrid �lms prepared withoutpost-baking exhibited higher dielectric constants and ex-tremely inferior current leakage, compared to post-bakedhybrid �lm. A dielectric strength of 1.2 MV/cm, mea-sured for the post-baked hybrid �lm, is su�cient for gatedielectric applications for OTFTs and there is no seriouscurrent leakage problem [17]. We believe that residualC=C bonds, methoxy groups and silanol groups can in-crease the dielectric constant of the hybrid �lm, as theyact as permanent dipoles. The e�ect of these groupscan be viewed as a bene�t since the threshold voltage ofthe transistor would be lowered; however, at the sametime, these groups can considerably deteriorate the cur-rent leakage behavior. We have recently reported thatsilanol groups in sol-gel derived dielectrics play a role

Fig. 6. ATR-FT-IR absorption spectra of (a) methacryland (b) silanol, methoxy and silicate groups in �lms preparedwithout post-baking and post-baked at 130 �C and 170 �C.All samples were pre-baked at 90 �C and irradiated by UVfor 15 min prior to post-baking. (Film thickness = 265 nm).

as a trap source of Poole-Frenkel conduction [22]. Boththe C=C bonds and the methoxy groups are electron-ically polarizable, so that they can act as trap sourcesfor electrons. Therefore, a post-baking treatment thatcan remove all functional chemical groups having elec-tronic polarizabilities is essential for obtaining a hybriddielectric �lm for OTFTs.
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Fig. 7. Current leakage behavior of hybrid dielectric �lmsprepared without post-baking and �lms post-baked at 170�C. All samples were pre-baked at 90 �C and irradiated byUV for 15 min prior to post-baking. (Film thickness = 265nm).
IV. CONCLUSION

We have synthesized an organosiloxane-based pho-topatternable dielectric material for OTFTs. The hy-brid material is composed of a siloxane-based matrix,including both ZrO2 nanoclusters for a high dielectricconstant and methacryl groups for negative-resist pho-topatternability. By investigating the chemical struc-ture of the hybrid �lm during the pre-baking process,we determined the optimal pre-baking temperature atwhich the dielectric �lm can be dried without causinga thermally-induced chemical reaction of the monomericspecies. The UV irradiation time was also optimized forobtaining a well-patterned structure with a linewidth of3 �m, based on an understanding of the polymerizationkinetics of methacryl groups. The in
uence of the post-baking process on the electrical properties of the hybriddielectric �lm was further investigated and a post-bakingtemperature of 170 �C produced a hybrid dielectric ma-terial with low current leakage that can be used for highperformance OTFTs.
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